131 research outputs found

    Intermittency in Turbulence: Multiplicative random process in space and time

    Full text link
    We present a simple stochastic algorithm for generating multiplicative processes with multiscaling both in space and in time. With this algorithm we are able to reproduce a synthetic signal with the same space and time correlation as the one coming from shell models for turbulence and the one coming from a turbulent velocity field in a quasi-Lagrangian reference frame.Comment: 23 pages, 12 figure

    Earthquake statistics inferred from plastic events in soft-glassy materials

    Get PDF
    We propose a new approach for generating synthetic earthquake catalogues based on the physics of soft glasses. The continuum approach produces yield-stress materials based on Lattice-Boltzmann simulations. We show that, if the material is stimulated below yield stress, plastic events occur, which have strong similarities with seismic events. Based on a suitable definition of displacement in the continuum, we show that the plastic events obey a Gutenberg-Richter law with exponents similar to those for real earthquakes. We further find that average acceleration, energy release, stress drop and recurrence times scale with the same exponent. The approach is fully self-consistent and all quantities can be calculated at all scales without the need of ad hoc friction or statistical laws. We therefore suggest that our approach may lead to new insight into understanding of the physics connecting the micro and macro scale of earthquakes.Comment: 13 pages, 7 figure

    Lectures on turbulence

    Get PDF
    Fluid dynamics turbulence refers to the chaotic and unpredictable dynamics of flows. Despite the fact that the equations governing the motion of fluids are known since more than two centuries, a comprehensive theory of turbulence is still a challenge for the scientific community. Rather recently a number of important breakthroughs have clarified many relevant, fascinating, and largely unexpected, statistical features of turbulent fluctuations. In these lectures, we discuss recent advances in the field with the aim of highlighting the physical meaning and implication of these new ideas and their role in contributing to disentangling different parts of our understanding of the turbulence problem. The lectures aim at introducing non-experts to the subject and no previous knowledge of the field is required

    A Null-space based Approach for a Safe and Effective Human-Robot Collaboration

    Full text link
    During physical human robot collaboration, it is important to be able to implement a time-varying interactive behaviour while ensuring robust stability. Admittance control and passivity theory can be exploited for achieving these objectives. Nevertheless, when the admittance dynamics is time-varying, it can happen that, for ensuring a passive and stable behaviour, some spurious dissipative effects have to be introduced in the admittance dynamics. These effects are perceived by the user and degrade the collaborative performance. In this paper we exploit the task redundancy of the manipulator in order to harvest energy in the null space and to avoid spurious dynamics on the admittance. The proposed architecture is validated by simulations and by experiments onto a collaborative robot

    Intermittency in Turbulence: computing the scaling exponents in shell models

    Get PDF
    We discuss a stochastic closure for the equation of motion satisfied by multi-scale correlation functions in the framework of shell models of turbulence. We give a systematic procedure to calculate the anomalous scaling exponents of structure functions by using the exact constraints imposed by the equation of motion. We present an explicit calculation for fifth order scaling exponent at varying the free parameter entering in the non-linear term of the model. The same method applied to the case of shell models for Kraichnan passive scalar provides a connection between the concept of zero-modes and time-dependent cascade processes.Comment: 12 pages, 5 eps figure

    Whole-Body Control of a Mobile Manipulator for Passive Collaborative Transportation

    Full text link
    Human-robot collaborative tasks foresee interactions between humans and robots with various degrees of complexity. Specifically, for tasks which involve physical contact among the agents, challenges arise in the modelling and control of such interaction. In this paper we propose a control architecture capable of ensuring a flexible and robustly stable physical human-robot interaction, focusing on a collaborative transportation task. The architecture is deployed onto a mobile manipulator, modelled as a whole-body structure, which aids the operator during the transportation of an unwieldy load. Thanks to passivity techniques, the controller adapts its interaction parameters online while preserving robust stability for the overall system, thus experimentally validating the architecture
    • …
    corecore